

Pergamon

Tetrahedron Letters, Vol. 35, No. 18, pp. 2951-2954, 1994 Elsevier Science Ltd Printed in Great Britain 0040-4039/94 \$6.00+0.00

0040-4039(94)E0425-W

LACTAM ACETALS : PART XXIV REACTION WITH ACTIVATED HALOALKYL COMPOUNDS WITH AND WITHOUT ZINC ¹

Sanjay Jain, Rahul Jain, Jujhar Singh and Nitya Anand *

Medicinal Chemistry Division Central Drug Research Institute Lucknow 226001, India

Abstract: Reaction of 2-alkoxyimmonium methosulfates (2), and of lactam acetals (3) derived therefrom, with α -haloesters in presence of zinc (Reformatsky condition) yielded N-alkyl-2-(α -alkyl- α -alkoxycarbonyl)methylene-1-azacycloalkanes (6), while reaction of 3 with α -haloesters without zinc gave 3-alkoxycarbonylmethyl-1-azacycloalkane-2-one (5). Similar reaction of 2 and 3 with 4-bromomethylquinolin-2-one (4) in presence of zinc gave N-alkyl-2-[4-[2-oxoquinolyl]methylene]-1-azacycloalkanes (7), a key intermediate for the synthesis of antimalarial quinoline-4-methanols.

Pyrrolidinyl and piperidinyl-acetic acids are important synthons commonly needed in organic synthesis 2^{-4} . If a carboxyalkyl residue could be conveniently grafted onto a pyrrolidinyl or piperidinyl substrate by a short path synthesis, these intermediates could become readily available. Pyrrolidone and piperidone acetals⁵ (or their immonium intermediates) can react as electrophile at C-2 and as nucleophile at C-3, While α -haloesters similarly act as C- α -electrophiles when used as such or as C- α -nucleophile under Reformatsky conditions $^{\circ}$. The condensation of pyrrolidone and piperidone acetals (or immonium intermediates thereof) seemed to offer the possibility of direct obtention of the corresponding 2- or 3-carboxyalkyl derivatives depending upon the reaction conditions used. Similarly reaction of 4-bromomethylquinolin-2-one with lactam acetals under conditions where side chain methyl would be electrophilic (as under Reformatsky conditions) seemed to offer a convenient route to the synthesis of 4-[2-(1-azacycloalkyl)methyl]guinolinones, which are useful intermediates for synthesis of quinolinemethanol antimalarials⁷ related to guinine and mefloguine. The successful execution of these reactions is reported in this communication.

Condensation of ethyl bromoacetate [35 mmol] with lactam acetals 3a and b [20 mmol] in a sealed tube at 120° gave 3-carbethoxymethyl-1methyl-2-pyrrolidone/piperidone (5a and b)⁸ in excellent yields (Scheme 1, Table 1). On the other hand, when lactam acetals 3a and b [12 mmol] were reacted with ethyl 2-bromoacetate/propionate/butyrate [10 mmol] in presence of freshly activated zinc dust [12 mmol] in Reformatsky reaction condition, the corresponding 2-(α -alkyl- α -ethoxycarbonyl)methylene-1-methylpyrrolidines/piperidines (6a-e)⁹ were obtained in 27-38% yield (Scheme 1, Table 1). With a view to further reduce the number of steps, the Reformatsky reaction was carried out on methoxyimmonium methosulfates 2a and b, which are intermediates in the preparation of lactam acetals, when 2-(α -alkyl- α -ethoxycarbonyl)methylene-1-methylpyrrolidin-es/piperidined even more conveniently and in better yield (46-58%) (Scheme 1, Table 1). 6a and d have been synthesized earlier by reacting (methylthio)alkylideniminium salt with ethyl acetate² or with Meldrum's acid³ whereas 6b were prepared by alkylation⁴ of 6a.

SCHEME - 1

The reaction of 4-bromomethyl-1,2-dihydroquinolin-2-one¹⁰ [4, 30 mmol] with 2a and b and/or 3a and b [36 mmol] and activated zinc dust [39 mmol] in anhydrous THF (50 ml) was next carried out when 4α -(1-meth-yl-2-pyrrolidinylidene/piperidinylidene)methyl-1,2-dihydroquinolin-2- one (7a and b)¹¹ were obtained (Scheme 2, Table 1). Compound 7a on catalytic hydrogenation (Pd-C catalyst at 3.5 kg/cm³ H₂ pressure in a Parr hydrogenator) afforded the 4α -(1-methyl-2-pyrrolidinyl)methyl-1,2-dihydro-guinolin-2-one (8)¹² in excellent yield. 8 on POCl₃ treatment followed by Pd-C hydrogenation in presence of triethylamine at RTP gave 4α -(1-

methyl-2-pyrrolidinyl)methylquinoline $(9)^{13}$ in 77% yield. This easy availability of 4α -(1-methyl-2-pyrrolidinyl)methylquinoline (9) which has earlier been oxygenated to quinolinemethanols 10^7 , provides a short and convenient approach to the synthesis of 4α -heterocycloalkyl quinoline-4-methanols.

The Reformatsky reaction of α -haloesters with lactim ethers and lactim thioethers was also studied but proved unsuccessful.

Reagents: i. <u>2</u> or <u>3</u>, Zn, 80°;+H⁺; II. H₂, Pd-C, 45psl; III. POCI₃, 80°; iv. H₂, Pd-C, Et₃N, RTP

SCH	EME	-	2
-----	-----	---	---

Table 1 : Physical constants of componds 5-7 #

Entry	n	R	% s	% vield	
No. ^A			From 2	From 3	
5a	1			89.5	
5 b	2	-	-	82.1	
6a	1	Н	58.3	35.5	
6 b	1	Me	51.7	33.9	
бс	1	Et	46.2	27.9	
6d	2	H	49.5	36.1	
6e	2	Me	46.1	37.3	
7a	1	-	63.0	56.5	
7 b	2	-	42.8	25.6	

* Products were purified by chromatography using Silica gel (230-400 mesh), and chracterised by their IR, NMR, MS data and gave satisfactory elemental analysis. ^ All compounds are oil in nature except 7a (mp. 254°)

ACKNOWLEDGEMENTS: This work was supported by the CSIR, New Delhi, Research grant No.2(320)/91-EMR-II. SJ thanks CSIR, New Delhi for the award of Senior Research Fellowship.

REFERENCES & NOTES

- 1. CDRI Communication No.5237.
- 2. Gugelchuk, M.M.; Hart, D.J.; Tsai, Y.-M.; J. Org. Chem. (1981) 46 3671.
- 3. Celerier, J.P.; Richaud, M.G.; Lhommet, G.; Synthesis (1983) 195.
- Celerier, J.P.; Marchalant, E.D.; Lhommet, G.; J.Het. Chem. (1984) 21, 1633.
- 5. Anand, N.; Singh, J.; Tetrahedron (1988) 44, 5975.
- 6. Rathke,M.W.; Organic Reactions (1975) 22, 423.
- 7. Ohnmacht, C.J.; Patel, A.R.; Lutz, R.E.; J. Med. Chem. (1971) 14, 926.
- 8. Spectral data of 5a:: $IR[Neat, cm^{-1}]$: 1740 (ester), 1690 (carbonyl). ¹H NMR[CDCl₃, δ ppm]: 1.25 (t, 3H, J=6 Hz, -CCH₃), 2.00-2.50 (m, 4H, 4-CH₂ & -CHCH₂), 2.80-3.10 (m, 4H, -NCH₃ & 3-CH), 3.30-3.60 (m, 2H, 5-CH₂), 4.15 (g, 2H, J=6 Hz, -OCH₂). MS: m/z 185 (M⁺). Analysis calcd for C₉H₁₅NO₃: C, 58.35; H, 8.16; N, 7.56. Found: C, 58.79; H, 8.03; N, 7.71%.
- 9. Spectral data of 6a:: IR[Neat,cm⁻¹]: 1620 (carbonyl). ¹H NMR[CDCl₃, δppm]: 1.20 (t, 3H, J=6 Hz, -CCH₃), 1.70-2.20 (m, 2H, 4-CH₂), 2.70 (s, 3H, -NCH₃), 2.90-3.65 (m, 4H, 3,5-CH₂), 4.05 (g, 2H, J=6 Hz, -OCH₂), 4.45 (s, 1H, olefinic-H). MS: m/z 169 (M⁺). Analysis calcd for C₉H₁₅NO₂: C, 63.87; H, 8.93; N, 8.27. Found: C, 63.90; H, 8.87; N, 8.53%.
- 10. Cook, D.J.; Bowen, R.E.; Sorter, P.; Daniels, E.; J. Org. Chem. (1961) 26, 4949.
- 11. Spectral data of **7a::** $IR[KBr, cm^{-1}]$: 1625 (carbonyl). ¹H NMR[CDCl₃, δ ppm]: 1.70-2.20 (m, 4H, 3' & 4'-CH₂), 2.90 (s, 3H, -NCH₃), 3.20-3.50 (m, 2H, 5'-CH₂), 5.22 (s, 1H, =CH), 6.32 (s, 1H, 3-ArH), 7.00-7.90 (m, 4H, ArH). MS: m/z 240 (M⁺). Analysis calcd for $C_{15}H_{16}N_{2}O$: C, 75.00; H, 6.66; N, 11.66. Found; C, 74.77; H, 6.33; N, 11.51%.
- 12. Spectral data of 8:: yield 72.0%, IR[KBr,cm⁻¹]: 1620 (carbonyl). ¹H NMR[CDCl₃, δ ppm]: 1.51-2.00 (m, 4H, 3' & 4'-CH₂), 2.19-2.91 (m, 5H, -NCH₃ & 1'-CH₂), 3.02-3.61 (m, 3H, 5'-CH₂ & 2'-CH), 6.68 (s, 1H, 3-ArH), 7.00-7.92 (m, 4H, ArH). MS: m/z 242 (M⁺). Analysis calcd for C₁₅H₁₉N₂O: C, 74.38; H, 7.43; N,]¹.57. Found: C, 74.11; H, 7.07; N, 11.17%.
- 13. Spectral data of 9:: yield 77.0%, IR[Neat, cm⁻¹]: 1600 (aromatic). ¹H NMR[CDCl₃, δ ppm]: 1.60-2.10 (m, 4H, 3' & 4'-CH₂), 2.60 (s, 3H, -NCH₃), 2.80-3.10 (m, 5H, 1' & 5'-CH₂ & 2'-CH), 7.28-7.35 (m, 1H, 3-ArH), 7.58-8.20 (m, 4H, ArH), 8.80-8.90 (m, 1H, 2-ArH). MS: m/z 226 (M⁺). Analysis calcd for C₁₅H₁₈N₂: C, 79.64; H, 7.96; N, 12.38. Found: C, 79.42; H, 7.56; N, 12.00%.

(Received in UK 10 January 1994; accepted 25 February 1994)

2954